Mark scheme

Question 1

y = -x + 6

Parallel lines have same gradients, so the gradient of the line is -

The equation can be written in the form y = mx + c where *m* is the gradient and *c* is the *y*-intercept.

Substituting the gradient gives y = -x + c

Substituting x = 5 and y = 1 give $1 = - \times 5 + c$

Rearranging gives $c = 1 + 1 \times 5 = 6$

Therefore the equation is y = -x + 6

Question 2

y = x + 1

Parallel lines have same gradients, so the gradient of the line is

The equation can be written in the form y = mx + c where *m* is the gradient and *c* is the *y*-intercept.

Substituting the gradient gives y = x + c

Substituting x = 3 and y = 4 give $4 = \times 3 + c$

Rearranging gives $c = 4 - 1 \times 3 = 1$

Therefore the equation is y = x + 1

Question 3

 $y = -\frac{1}{3}x + 4$

(1) Find the gradient of the line

m = 3

(2) Find the negative reciprocal of m = 3

$$m_{\perp} = -\frac{1}{3}$$

(3) Substitute $m = -\frac{1}{3}$, x = 3 and y = 3 into y = mx + c $3 = -\frac{1}{3} \times 3 + c$ $c = 3 + \frac{1}{3} \times 3$ = 4(4) Substitute $m = -\frac{1}{3}$ and c = 4 into y = mx + c $y = -\frac{1}{3}x + 4$

Question 4

 $y = -\frac{1}{2}x + 6$

1 Find the gradient of the line

m = 2

(2) Find the negative reciprocal of m = 2

$$m_{\perp} = -\frac{1}{2}$$

(3) Substitute
$$m = -\frac{1}{2}$$
, $x = 2$ and $y = 5$ into $y = mx + c$
 $5 = -\frac{1}{2} \times 2 + c$
 $c = 5 + \frac{1}{2} \times 2$
 $= 6$

(4) Substitute $m = -\frac{1}{2}$ and c = 6 into y = mx + c

$$y = -\frac{1}{2}x + 6$$

Question 5

 $y-1 = -2\left(x - \frac{9}{2}\right)$

Substitute m = -2, $x_1 = \frac{9}{2}$ and $y_1 = 1$ into $y - y_1 = m (x - x_1)$

$$y-1=-2\left(x-\frac{9}{2}\right)$$

Question 6

$$y - 18 = -\frac{5}{4}(x - 10)$$

Substitute $m = -\frac{5}{4}$, $x_1 = 10$ and $y_1 = 18$ into $y - y_1 = m(x - x_1)$ $y - 18 = -\frac{5}{4}(x - 10)$

Question 7

y + 8 = -2(x + 7)

Make y the subject of -8x - 4y + 4 = 0

-8x - 4y + 4 = 0-8x + 4 = 4y-2x + 1 = y

Parallel lines have same gradient therefore m = -2

Substitute m = -2, $x_1 = -7$ and $y_1 = -8$ into $y - y_1 = m$ ($x - x_1$)

y + 8 = -2(x + 7)

Question 8

 $y + \frac{11}{2} = 2(x - 5)$

Make *y* the subject of 8x - 4y - 8 = 0

$$8x - 4y - 8 = 0$$
$$8x - 8 = 4y$$
$$2x - 2 = y$$

Parallel lines have same gradient therefore m = 2

Substitute m = 2, $x_1 = 5$ and $y_1 = -\frac{11}{2}$ into $y - y_1 = m (x - x_1)$

$$y + \frac{11}{2} = 2(x - 5)$$

Question 9

$$y + 13 = -\frac{4}{7}(x - 17)$$

The gradients of perpendicular lines satisfy $m_{\perp} = -\frac{1}{m}$.

Given that $m = \frac{7}{4}$, $m_{\perp} = -\frac{4}{7}$ Substitute $m_{\perp} = -\frac{4}{7}$, $x_1 = 17$ and $y_1 = -13$ into $y - y_1 = m$ ($x - x_1$)

$$y + 13 = -\frac{4}{7}(x - 17)$$

Question 10

y - 11 = (x + 6)

Make y the subject of -2x - 2y + 10 = 0

$$-2x - 2y + 10 = 0$$
$$-2x + 10 = 2y$$
$$-x + 5 = y$$

The gradients of perpendicular lines satisfy $m_{\perp} = -\frac{1}{m}$.

Given that m=-1 , $m_{\perp}=1$

Substitute $m_{\perp}=1, x_1=-6$ and $y_1=11$ into $y-y_1=m$ ($x-x_1$)

$$y - 11 = (x + 6)$$

Question 11

$$y = \frac{1}{3}x - 1$$

① Find the midpoint of PQ

$$Midpoint = \left(\frac{-2+2}{2}, \frac{5+(-7)}{2}\right)$$
$$Midpoint = (0, -1)$$

② Find the perpendicular gradient.

$$m_{PQ} = rac{-7-5}{2-(-2)}$$

 $m_{PQ} = -3$
 $m_{\perp} = -rac{1}{m_{PQ}}$
 $\therefore m_{\perp} = rac{1}{3}$

③ Substitute into straight line equation.

$$y + 1 = \frac{1}{3}x$$
$$y + 1 = \frac{1}{3}x$$
$$y = \frac{1}{3}x - 1$$

Question 12

3x - y - 4 = 0

Tind the midpoint of PQ

Midpoint =
$$\left(\frac{7+1}{2}, \frac{7+9}{2}\right)$$

Midpoint = (4,8)

^② Find the perpendicular gradient.

$$m_{PQ} = rac{9-7}{1-7}$$
 $m_{PQ} = -rac{1}{3}$
 $m_{\perp} = -rac{1}{m_{PQ}}$
 $\therefore m_{\perp} = 3$

③ Substitute into straight line equation.

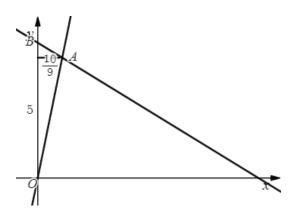
$$y-8 = 3(x-4)$$

 $y-8 = 3x - 12$
 $3x - y - 4 = 0$

Question 13

25 9

Coordinates of A by solving simultaneously y = 4x and 2y + x = 10:


$$2(4x) + x = 10$$
$$x = \frac{10}{9}$$
$$y = 4\left(\frac{10}{9}\right)$$
$$y = \frac{40}{9}$$
$$\therefore A\left(\frac{10}{9}, \frac{40}{9}\right)$$

Coordinates of *B* where x = 0:

$$y = -\frac{1}{2}(0) + 5$$

$$y = 5$$

$$\therefore B(0,5)$$

 $\frac{1}{2} \times 5 \times \frac{10}{9} = \frac{25}{9}$

Question 14

3

Coordinates of *P* by solving simultaneously y = 4x and y + 2x = 6:

$$(4x) + 2x = 6$$

$$x = 1$$

$$y = 4(1)$$

$$y = 4$$

$$\therefore P(1, 4)$$

Coordinates of Q where x = 0:

$$y = -2(0) + 6$$

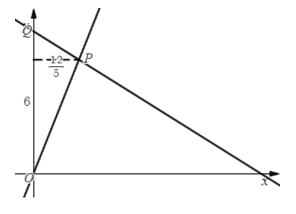
 $y = 6$

 $\therefore Q(0, 6)$

$$\frac{1}{2} \times 6 \times 1 = 3$$

Question 15

 $\frac{36}{5}$


Coordinates of *P* by solving simultaneously y = 2x and 2y + x = 12:

$$2(2x) + x = 12$$
$$x = \frac{12}{5}$$
$$y = 2\left(\frac{12}{5}\right)$$
$$y = \frac{24}{5}$$
$$\therefore P\left(\frac{12}{5}, \frac{24}{5}\right)$$

Coordinates of Q where x = 0:

$$y = -\frac{1}{2}(0) + 6$$

 $y = 6$

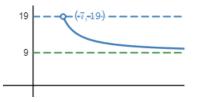
 $\therefore Q(0,6)$

Area of *OPQ*:

 $\frac{1}{2} \times 6 \times \frac{12}{5} = \frac{36}{5}$

Question 16

9 < h(x) < 19


① Substitute x = 7 into h(x) to find an initial y coordinate.

$$h(7) = \frac{18 \times 7+7}{2 \times 7-7} \\ = \frac{133}{7} \\ = 19$$

② Consider the limit of h(x) as x increases.

$$\lim_{x \to \infty} h(x) = \lim_{x \to \infty} \frac{18x+7}{2x-7}$$
$$= \lim_{x \to \infty} \frac{18+\frac{7}{x}}{2-\frac{7}{x}}$$
$$= \frac{18}{2}$$
$$= 9$$

③ Sketch a graph of y = h(x) to visualise the function.

④ Use the graph to identify the range of h(x).

[m]\begin{aligned}9

Question 17

(4,5)

Complete the square:

$$y = x^{2} - 8x + 21$$

= $(x - 4)^{2} - 16 + 21$
= $(x - 4)^{2} + 5$

Therefore the minimum point is (4, 5)

Question 18

4p + 6

You need to replace 25 by 5^2 , and then multiply the powers.

$$25^{2p+3} = (5^2)^{2p+3} = 5^{4p+6}$$

 $\therefore q = 4p + 6$

Question 19

$$x = 5, y = -2 \text{ or } x = -\frac{23}{5}, y = \frac{14}{5}$$

Rearrange x + 2y = 1 to make y the subject.

$$x + 2y = 1$$

$$2y = 1 - x$$

$$y = \frac{1 - x}{2}$$

Substitute $y = \frac{1-x}{2}$ into $x^2 + y^2 = 29$ then solve.

$$x^{2} + \left(\frac{1-x}{2}\right)^{2} = 29$$

$$x^{2} + \frac{(1-x)(1-x)}{4} = 29$$

$$4x^{2} + (1-x)(1-x) = 116$$

$$4x^{2} + 1 - x - x + x^{2} = 116$$

$$5x^{2} - 2x + 1 = 116$$

$$5x^{2} - 2x - 115 = 0$$

$$\therefore x = 5 \text{ or } x = -\frac{23}{5}$$

Substitute these values into x + 2y = 1

When
$$x = 5$$
, $1(5) + 2y = 1$
 $y = -2$

When
$$x = -\frac{23}{5}$$
, $1\left(-\frac{23}{5}\right) + 2y = 1$
 $y = \frac{14}{5}$

Question 20

 $-(y-2)^2 + 12$

The the terms of -1 out of the first two terms.

$$-y^2 + 4y + 8 = -[y^2 - 4y] + 8$$

^② Complete the square on the first two terms.

$$-[y^2 - 4y] + 8 = -[(y - 2)^2 - 4] + 8$$

③ Expand the square brackets and simplify.

$$-[(y-2)^{2}-4]+8$$

= -(y-2)^{2}+4+8
= -(y-2)^{2}+12

ANSWER ALL QUESTIONS, MAKE SURE YOU SHOW ALL WORKING OTHERWISE YOU WILL NOT BE AWARDED MARKS. IF YOU WRITE ON ANY OTHER PAPER, PLEASE HAND THIS IN WITH THE SHEET.

1. Find an equation of the line parallel to y=-x-2 and that passes through the point (5,1)	 Find an equation of the line parallel to y = x* 5 and that passes through the point (5,1) 	 Find an equation of the line perpendicular to y = 3x - 4 and passes through the point (3,3) 	 Find an equation of the line perpendicular to y = 2x + 1 and passes through the point (2,5) 	5. Find an equation of the line with the gradient -2 and passes through the point (9/2, 1)
6. Find an equation of the line with the gradient -5/4 and passses through the point (10,18)	7. Determine an equation of the line parallel to $-8x - 4y + 4 = 0$ and that passes through the point (-7,-8)	 Determine an equation of the line parallel to 8x - 4y - 8 = 0 and that passes through the point (5, -11/2) 	9. Find an equation of the line perpendicular to y= 7/4x - 3/2 and passes through the point (17, -13)	10. Find an equation of the line perpendicular to -2x -2y +10 =0 and passes through the point (-6,11)
11. A straight line passes through the points P(2, -7) and Q(2, -7) Find the equation of the perpendicular bisector of PQ. Give your answer in the form y=mx + c. Simplify your answer where possible.	12. A straight line passes through the points $P(7, 7)$ and $Q(1,9)$ Find the equation of the perpendicular bisector of PQ. Give your answer in the form ax + by + c = 0, where a,b and c are integers.	13. The line I ₁ has the equation $y = 4x$. The line I ₂ has the equation $2y + x = 10$. The lines intersect at A. The line I ₂ intersects the y axis at B. Find the exact area of triangle OAB	14. The line I ₁ has the equation $y = 4x$. The line I ₂ has the equation $y + 2x = 6$. The lines intersect at P. The line I ₂ intersects the y axis at Q. Find the exact area of triangle OPQ. HINT: Draw a diagram	15. The line I ₁ has the equation $y = 2x$. The line I ₂ has the equation $2y + x = 12$. The lines intersect at P. The line I ₂ intersects the y axis at Q. Find the exact area of triangle OPQ. HINT: Draw a diagram
16. State the range of h. $h(x) = \frac{18x+7}{2x-7}$, $x > 7$	17. Find the minimum point of the graph $y = x^2 - 8x + 21$	18. Express 25^{2p+3} in the form 5^q , stating q in terms of p	19. Solve the simultaneous equations x + 2y = 1 $x^2 + y^2 = 29$	20. Write $-y^2 + 4y + 8$ in the form $a(y+b)^2 + c$. Where a, b and c are rational numbers.