ANSWER ALL QUESTIONS, MAKE SURE YOU SHOW ALL WORKING OTHERWISE YOU WILL NOT BE AWARDED MARKS. IF YOU WRITE ON ANY OTHER PAPER, PLEASE HAND THIS IN WITH THE SHEET.

1. Solve $2x + 9 \ge -5$	2. Solve $10 > 8a + 2$	3. Solve $5y+8 \le 9y+4$	4. Solve $3 \le 4x + 13 \le 22$	5. Solve $8-3x \leq -3$	6.Solve $6(x+2) - 11 < 4(x+3)$
7. Solve $x^2 + 4x \leq 0$	8. Solve $x^2 + 3x - 10 \le 0$	9. Solve $x(x+1) \ge 6$	10. Solve $x^2 \leq 5x$	11. Solve $z(z+6) + 5 < 0$	12. Solve $9x^2 \le 49$
13. Solve $(5z+4)(z-3)+14 > 0$	14. Solve $7x - 12 - x^2 > 0$	15. Solve $4-z^2 \ge 0$	16. Solve $1 \ge \frac{7x}{2x^2+5}$	17. n is an integer that satisfies both: $5n + 2 < 12$ and $2n^2 - 5n + 2 \le 0$ Find the possible values of n	18. n is an integer that satisfies both: $4n + 7 > 27$ and $n^2 - 7n + 6 \le 0$ Find the possible values of n
19. Solve $y = x^2 + 12x + 24$ y = 2x + 3	20. Solve $y = x^2 + 7x + 17$ y = -2x + 3	21. Solve $y = 4x + 5$ $x^2 + y^2 = 58$	22. Solve $x + y = 5$ $x^2 + y^2 = 25$	23. Solve $x - y = 5$ $x^2 + y^2 = 25$	24. Find the original equation of the graph $\begin{pmatrix} y \\ y \end{pmatrix}$
					(-1, 0) *
25. Find the original equation of the graph	26. Find the range of f(x) $f(x) = 3x^2 - 7x - 4, \qquad x \in \mathbb{R}$	27. Find fg(10) $f(x) = \frac{10x+10}{4x+10}$ $a(x) = \frac{5x-6}{4x+10}$	28. Find gg(x) $g(x) = 10x + 10$	29. Given $f(x) = 4x + 5$, find $f^{-1}(x)$.	30. Given $g(x) = \sqrt{\frac{6x-7}{10x+1}}$, find $g^{-1}(x)$.
(-1,0) (-3,0) x		$g(x) = \frac{1}{4x-7}$			
(-2,-15)					

Mark scheme

Question 1

 $x \ge -7$ $2x + 9 \ge -5$ $-9 \downarrow \quad \downarrow -9$ $2x \ge -14$ $\div 2 \downarrow \quad \downarrow \div 2$ $x \ge -7$

Question 2

a < 1

10 > 8a + 2 $-2 \downarrow \quad \downarrow \quad -2$ 8 > 8a $\div 8 \downarrow \quad \downarrow \quad \div 8$ 1 > a $\therefore a < 1$

Question 3

 $y \ge 1$

$$5y+8 \leq 9y+4$$

$$-5y \downarrow \quad \downarrow \quad -5y$$

$$8 \leq 4y+4$$

$$-4 \downarrow \quad \downarrow \quad -4$$

$$4 \leq 4y$$

$$\div 4 \downarrow \quad \downarrow \quad \div 4$$

$$1 \leq y$$

$$\therefore y \geq 1$$

Question 4

 $-\frac{5}{2} \le x \le \frac{9}{4}$

$$3 \le 4x + 13 \le 22 -13 - 13 - 13 -10 \le 4x \le 9 ÷ 4 ÷ 4 ÷ 4 -\frac{5}{2} \le x \le \frac{9}{4}$$

Question 5

 $x \ge \frac{11}{3}$ $8 - 3x \le -3$ $+3x \downarrow +3x$ $8 \le 3x - 3$ $+3 \downarrow +3$ $11 \le 3x$ $\div 3 \downarrow +3$ $\frac{11}{3} \le x$ $\therefore x \ge \frac{11}{3}$

Question 6

$$x < \frac{11}{2}$$

① Expand the brackets and simplify.

6(x+2) - 11 < 4(x+3) 6x + 12 - 11 < 4x + 126x + 1 < 4x + 12

② Solve the inequality.

$$6x + 1 < 4x + 12$$

$$-4x \downarrow \qquad \downarrow \qquad -4x$$

$$2x + 1 < 12$$

$$-1 \downarrow \qquad \downarrow \qquad -1$$

$$2x < 11$$

$$\div 2 \downarrow \qquad \downarrow \qquad \div 2$$

$$x < \frac{11}{2}$$

Question 7

 $-4 \leq x \leq 0$

➀ Factorise and find the critical values.

$$x^{2} + 4x \leq 0$$
$$x(x+4) \leq 0$$
$$x = -4 \text{ or } x = 0$$

âž To solve $x(x + 4) \le 0$, sketch y = x(x + 4), then consider where $y \le 0$

Therefore & $nbsp - 4 \le x \le 0$

Question 8

 $-5 \leq x \leq 2$

➀ Factorise and find the critical values.

 $x^{2} + 3x - 10 \le 0$ (x + 5)(x - 2) \le 0 x = -5 or x = 2

âž To solve (x + 5)(x - 2) ≤ 0, sketch y = (x + 5)(x - 2), then consider where y ≤ 0

Therefore & nbsp $-5 \le x \le 2$

Question 9

 $x \leq -3 \text{ or } x \geq 2$

➀ Expand the brackets and make one side of the inequality 0.

$$x(x+1) \ge 6$$
$$x^2 + x \ge 6$$
$$x^2 + x - 6 \ge 0$$

âž Factorise and find the critical values.

$$(x+3)(x-2) \ge 0$$

 $x = -3 \text{ or } x = 2$

 \hat{a} x̃, To solve (x + 3)(x - 2) ≥ 0, sketch y = (x + 3)(x - 2), then consider where y ≥ 0

Therefore & $nbsp x \leq -3 \text{ or } x \geq 2$

Question 10

 $0 \leq x \leq 5$

➀ Make one side of the inequality 0.

$$x^2 \le 5x$$
$$x^2 - 5x \le 0$$

âž Factorise and find the critical values.

$$x(x-5) \le 0$$

$$x = 0 \text{ or } x = 5$$

 \hat{a} ž, To solve x(x-5) ≤ 0, sketch y = x(x-5), then consider where y ≤ 0

Therefore & nbsp $0 \le x \le 5$

Question 11

-5 < z < -1

➀ Expand the brackets.

$$z(z+6) + 5 < 0$$

$$z^2 + 6z + 5 < 0$$

âž Factorise and find the critical values.

$$(z+5)(z+1) < 0$$

 $z = -5 \text{ or } z = -1$

âž, To solve (z + 5)(z + 1) < 0, sketch y = (z + 5)(z + 1), then consider where y < 0

Therefore & nbsp -5 < z < -1

Question 12

 $-\frac{7}{3} \le x \le \frac{7}{3}$

➀ Make one side of the inequality 0.

$$9x^2 \le 49$$
$$9x^2 - 49 \le 0$$

âž Factorise by the difference of two squares and find the critical values.

$$(3x + 7)(3x - 7) \le 0$$

 $x = -\frac{7}{3}$ or $x = \frac{7}{3}$

âž To solve (3x + 7)(3x - 7) ≤ 0, sketch y = (3x + 7)(3x - 7), then consider where y ≤ 0

Therefore & $nbsp - \frac{7}{3} \le x \le \frac{7}{3}$

Question 13

 $z < \frac{1}{5}$ or z > 2

➀ Expand the brackets and simplify.

$$(5z+4)(z-3) + 14 > 0$$

$$5z^{2} - 11z - 12 + 14 > 0$$

$$5z^{2} - 11z + 2 > 0$$

âž Factorise and find the critical values.

$$(5z-1)(z-2) > 0$$

 $z = \frac{1}{5}$ or $z = 2$

âž, To solve (5z-1)(z-2) > 0, sketch y = (5z-1)(z-2), then consider where y > 0

Therefore $z < \frac{1}{5}$ or z > 2

Question 14

3 < x < 4

➀ Multiply the equation by -1 to get a positive x^2 term which also flips the inequality sign.

 $7x - 12 - x^{2} > 0$ $12 - 7x + x^{2} < 0$ $x^{2} - 7x + 12 < 0$

âž Factorise and find the critical values.

$$(x-3)(x-4) < 0$$

x = 3 or x = 4

âž, To solve (x-3)(x-4) < 0, sketch y = (x-3)(x-4), then consider where y < 0

Therefore & nbsp 3 < x < 4

Question 15

 $-2 \leq z \leq 2$

➀ Multiply the equation by -1 to get a positive x^2 term which also flips the inequality sign.

 $\begin{array}{c} 4-z^2 \geq 0 \\ -4+z^2 \leq 0 \\ z^2-4 \leq 0 \end{array}$

âž Factorise and find the critical values.

$$(z+2)(z-2) \le 0$$

 $z = -2 \text{ or } z = 2$

5

www.drfrostmaths.com

 \hat{a} z, To solve (z+2)(z-2) ≤ 0, sketch y = (z+2)(z-2), then consider where y ≤ 0

Therefore & nbsp $-2 \le z \le 2$

Question 16

 $x \le 1 \text{ or } x \ge \frac{5}{2}$

➀ Given that $2x^2 + 5$ is always positive, multiply by $2x^2 + 5$ and rearrange.

 $1 \geq \frac{7x}{2x^2+5}$ $2x^2+5 \geq 7x$ $2x^2-7x+5 \geq 0$

âž Factorise and find the critical values.

$$2x^{2} - 7x + 5 \ge 0$$

(x-1)(2x-5) \ge 0
x = 1 or x = \frac{5}{2}

âž, Draw a graph and solve.

Therefore & nbsp $x \le 1$ or $x \ge \frac{5}{2}$

Question 17

1

➀ Solve the first inequality.

5n + 2 < 125n < 10n < 2

âž Factorise and find the critical values.

$$2n^{2} - 5n + 2 \leq 0$$

(2n-1)(n-2) ≤ 0
 $n = \frac{1}{2}$ or $n = 2$

âž, Draw a graph and solve.

Therefore $\frac{1}{2} \le n \le 2$

âžf Combine the two sets of solutions.

 $\frac{1}{2} \leq \, n \, \leq \, 2 \,$ and $n < \, 2$

$$\frac{1}{2} \le n < 2$$
$$n = 1$$

Question 18

6

➀ Solve the first inequality.

4n + 7 > 274n > 20n > 5

âž Factorise and find the critical values.

$$n^2 - 7n + 6 \le 0$$

 $(n-1)(n-6) \le 0$
 $n = 1 \text{ or } n = 6$

âž, Draw a graph and solve.

Therefore & nbsp $1 \le n \le 6$

âžf Combine the two sets of solutions.

 $1 \le n \le 6$ & nbsp and & nbsp n > 5 $5 < n \le 6$ n = 6

Question 19

x = -7, y = -11 or x = -3, y = -3

Equate the right-handside of the two equations and solve the resulting quadratic equation.

 $x^{2} + 12x + 24 = 2x + 3$ $x^{2} + 10x + 21 = 0$ (x + 7)(x + 3) = 0x = -7 or x = -3

Substitute each value of x into y = 2x + 3

When x = -7, $y = 2 \times -7 + 3 = -11$

When x = -3, $y = 2 \times -3 + 3 = -3$

Question 20

x = -2, y = 7 or x = -7, y = 17

Equate the right-handside of the two equations and solve the resulting quadratic equation.

$$x^{2} + 7x + 17 = -2x + 3$$

$$x^{2} + 9x + 14 = 0$$

$$(x + 2)(x + 7) = 0$$

$$x = -2 \text{ or } x = -7$$

Substitute each value of x into y = -2x + 3

When x = -2, $y = -2 \times -2 + 3 = 7$

When x = -7, $y = -2 \times -7 + 3 = 17$

Question 21

 $x = \frac{11}{17}, y = \frac{129}{17}$ or x = -3, y = -7

Substitute y = 4x + 5 into $x^2 + y^2 = 58$ then solve.

$$x^{2} + (4x + 5)^{2} = 58$$

$$x^{2} + (4x + 5)(4x + 5) = 58$$

$$x^{2} + 16x^{2} + 20x + 20x + 25 = 58$$

$$17x^{2} + 40x + 25 = 58$$

$$17x^{2} + 40x - 33 = 0$$

$$(17x - 11)(x + 3) = 0$$

$$\therefore x = \frac{11}{17} \text{ or } x = -3$$

Substitute these values into y = 4x + 5

When
$$x = \frac{11}{17}$$
, $y = 4\left(\frac{11}{17}\right) + 5$
= $\frac{129}{17}$

When x = -3, y = 4(-3) + 5= -7

Question 22

x = 5, y = 0 or x = 0, y = 5

Rearrange x + y = 5 to make y the subject.

$$\begin{array}{rcl} x+y &=& 5\\ y &=& 5-x \end{array}$$

Substitute y = 5 - x into $x^2 + y^2 = 25$ then solve.

$$x^{2} + (5 - x)^{2} = 25$$

$$x^{2} + (5 - x)(5 - x) = 25$$

$$x^{2} + 25 - 5x - 5x + x^{2} = 25$$

$$2x^{2} - 10x + 25 = 25$$

$$2x^{2} - 10x = 0$$

$$\therefore x = 5 \text{ or } x = 0$$

Substitute these values into x + y = 5

When
$$x = 5$$
, $1(5) + y = 5$
 $y = 0$
When $x = 0$, $1(0) + y = 5$
 $y = 5$

Question 23

x = 5, y = 0 or x = 0, y = -5

Rearrange x - y = 5 to make y the subject.

$$x - y = 5$$

$$-y = 5 - x$$

$$y = \frac{5 - x}{-1}$$

$$y = \frac{-5 + x}{1}$$

Substitute $y = \frac{-5+x}{1}$ into $x^2 + y^2 = 25$ then solve.

$$x^{2} + \left(\frac{-5+x}{1}\right)^{2} = 25$$

$$x^{2} + \frac{(-5+x)(-5+x)}{1} = 25$$

$$x^{2} + (-5+x)(-5+x) = 25$$

$$x^{2} + 25 - 5x - 5x + x^{2} = 25$$

$$2x^{2} - 10x + 25 = 25$$

$$2x^{2} - 10x = 0$$

$$\therefore x = 5 \text{ or } x = 0$$

Substitute these values into x - y = 5

When
$$x = 5$$
, $1(5) - y = 5$
 $y = 0$
When $x = 0$, $1(0) - y = 5$
 $y = -5$

Question 24

$$y = -3x^2 - 21x - 18$$

①Use the roots to set up the equation: y = k(x + 6) (x + 1)*Note: k is required as the 'leading coefficient' (a in the quadratic formula) might not be* 1.**②Substitute using a point on the curve:**Since (-2,12) is on the curve, we 12 = k(-2 + 6) (-2 + 1)

subsitute x = -2 and y = 12: 12 = k(-4) k = -3 y = -3(x + 6)(x + 1) k = -3, we get: $y = -3(x^2 + 7x + 6)$ $y = -3x^2 - 21x - 18$

Question 25

 $y = 5x^2 + 30x + 25$

①Use the roots to set up the equation: y = k(x + 5) (x + 1)*Note: k is required as the 'leading coefficient' (a in the quadratic formula) might not be* 1.**②Substitute using a point on the curve:**Since (-2, -15) is on the curve, we -15 = k(-2 + 5) (-2 + 1)

 $y = 5(x + 5) (x + 1)^{k}$ $k = 5, \text{ we get:} \quad y = 5(x^{2} + 6x + 5)$ $y = 5x^{2} + 30x + 25$ Question 26 $f(x) \ge -\frac{97}{12}$

subsitute x = -2 and y = -15: -15 = k(-3)

Sketch the graph of y = f(x)

Complete the square:

$$f(x) = 3x^{2} - 7x - 4$$

= $3\left(x^{2} - \frac{7}{3}x\right) - 4$
= $3\left(\left(x - \frac{7}{6}\right)^{2} - \frac{49}{36}\right) - 4$
= $3\left(x - \frac{7}{6}\right)^{2} - \frac{97}{12}$

The minimum point of the graph has a *y*-coordinate of $-\frac{97}{12}$ \therefore $f(x) \ge -\frac{97}{12}$

③SimplifyUsing

Question 27

35 23

$$fg(10) = f(g(10)) = f\left(\frac{5(10)-6}{4(10)-7}\right) = f\left(\frac{4}{3}\right) = f\left(\frac{10\left(\frac{4}{3}\right)+10}{4\left(\frac{4}{3}\right)+10}\right) = \frac{35}{23}$$

Question 28

100x + 110

$$gg(x) = g(g(x)) = g(10x + 10) = 10(10x + 10) + 10 = 100x + 110$$

Question 29

 $\frac{x-5}{4}$

Replace f(x) by y and make x the subject.

$$f(x) = 4x + 5$$

$$y = 4x + 5$$

$$y - 5 = 4x$$

$$\frac{y-5}{4} = x$$

Interchange x and y and then replace y by $f^{-1}(x)$

$$\frac{x-5}{4} = y$$

 $f^{-1}(x) = \frac{x-5}{4}$

Question 30

 $\frac{-x^2-7}{10x^2-6}$

① Write $y = \dots$ and make x the subject.

$$y = \sqrt{\frac{6x-7}{10x+1}}$$
$$y^{2} = \frac{6x-7}{10x+1}$$
$$10xy^{2} + y^{2} = 6x - 7$$
$$10xy^{2} - 6x = -y^{2} - 7$$
$$x(10y^{2} - 6) = -y^{2} - 7$$
$$x = \frac{-y^{2}-7}{10y^{2}-6}$$

② Interchange x and y and write $g^{-1}(x) = \dots$

$$y = \frac{-x^2 - 7}{10x^2 - 6}$$
$$g^{-1}(x) = \frac{-x^2 - 7}{10x^2 - 6}$$